

Math Virtual Learning

Precalculus with Trigonometry

Students will graph tangent and cotangent functions and transform the functions with stretch/shrink factors and vertical shifts.

April 16, 2020

Precalculus with Trigonometry Lesson: April 16th, 2020

Objective/Learning Target:

Students will graph tangent and cotangent functions and transform the functions with stretch/shrink factors and vertical shifts.

Let's Get Started: Watch Video: <u>Graphing y = tan(x)</u>

Example

In yesterday's lesson we graphed y = sin(x) and y = cos(x) as well as discovered the amplitude and midline of the functions. The tangent function can also be transformed, but due to the vast differences in y = tan(x) and y=sin(x), those transformations are labeled differently.

Go to <u>Desmos</u> and graph the functions y = tan(x), $y = \frac{1}{2} tan(x)$. How did the $\frac{1}{2}$ affect the function?

Multiplying y = tan(x) by $\frac{1}{2}$ shrinks the function. Each value on $y = \frac{1}{2} tan(x)$ is half as tall as the value from y = tan(x)

Example

Go to back to <u>Desmos</u> and graph the functions y = tan(x), y = tan(x) + 2.

How did the 2 affect the function?

Answer to example

The tangent function was shifted up vertically 2 units.

STRETCH/SHRINK FACTORS AND VERTICAL SHIFT FOR TANGENT FUNCTIONS

a value determines shrink/stretch factor d value determines vertical shift

a > 1 stretch factor

a < 1 shrink factor

d > 0 vertical shift up

d < 0 vertical shift down

Example: y = 2tan(x) - 3 has a stretch factor of 2 and a vertical shift down 3 units.

Practice

- After watching the video covering how to graph y = tan(x), try graphing y = cot(x) on your own. Remember, that the cotangent is the reciprocal of tangent.
- 2. Where are the asymptotes located on the cotangent function? Are the asymptotes for tangent the same or different for cotangent?
- 3. Using your knowledge of transforming tangent functions, determine the stretch/shrink factor and vertical shift of $y = \frac{1}{4} \tan(x) + 4$

2. The asymptotes are located at x = 0 and $x = \pi$ This differs from the tangent function whose asymptotes are located at $x = \frac{\pi}{2} = 2\pi$

3. Shrink factor of $\frac{1}{4}$ and a vertical shift up 4 units.

Additional Practice:

Graphing Tangent and Cotangent

Answers to additional practice